MagSense™ Technology
A New Clinical Diagnostic Technology for Targeted Early Detection of Cancer

PROACTIVE’S CEO INVESTOR SESSION - MELBOURNE
JULY 2018 | ASX: IBX

www.imagionbiosystems.com
DISCLAIMER

This presentation has been prepared by Imagion Biosystems Limited (Imagion) for the benefit of certain investors who are sophisticated or professional investors and wholesale clients (as those terms are defined in the Corporations Act 2001 (Cth) (Corporations Act).

This presentation does not constitute or form part of, and should not be construed as, an offer, solicitation or invitation to subscribe for, underwrite or otherwise acquire, any securities of Imagion or any member of its group nor should it or any part of it form the basis of, or be relied on in connection with, any contract to purchase or subscribe for any securities of Imagion or any member of its group, nor shall it or any part of it form the basis of or be relied on in connection with any contract or commitment whatsoever.

This presentation is not a prospectus, product disclosure statement or other disclosure document under Australian law (or any other law), and has not been lodged with the Australian Securities and Investments Commission (or any other regulatory body in Australia or abroad).

This presentation is being made available to you on the basis that you are a person to whom a disclosure document is not required under the Corporations Act in order to lawfully receive an offer to subscribe for securities in Imagion.

This presentation contains summary information about Imagion and its activities, which is current as at the date of this presentation. The information included in this presentation is of a general nature and does not purport to be complete nor does it contain all the information which a prospective investor should consider when making an investment decision. Each recipient of this presentation should make its own enquiries and investigations regarding all information in this presentation including but not limited to the assumptions, uncertainties and contingencies which may affect future operations of Imagion and the impact that different future outcomes may have on Imagion. This presentation has been prepared without taking account of any person’s investment objectives, financial situation or particular needs. Before making an investment decision, prospective investors should consider the appropriateness of the information having regard to their own objectives, financial situation and needs, make their own assessment of the information and seek legal, financial, accounting and taxation advice appropriate to their jurisdiction in relation to the information and any action taken on the basis of the information. Imagion is an early stage medical technology company and has so far has not conducted research in human subjects.

The information included in this presentation has been provided to you solely for your information and background and is subject to updating, completion, revision and amendment and such information may change materially. Unless required by applicable law or regulation, no person (including Imagion) is under any obligation to update or keep current the information contained in this presentation and any opinions expressed in relation thereto are subject to change without notice. No representation or warranty, express or implied, is made as to the fairness, currency, accuracy, reasonableness or completeness of the information contained herein. Neither Imagion nor any other person (including its shareholders, directors, officers and employees) accepts any liability and Imagion, its shareholders, its related bodies corporate and their respective directors, officers and employees, to the maximum extent permitted by law, expressly disclaim all liabilities for any loss howsoever arising, directly or indirectly, from this presentation or its contents.

This presentation includes forward-looking statements that reflect Imagion’s intentions, beliefs or current expectations concerning, among other things, Imagion’s results of operations, financial condition, performance, prospects, growth, strategies and the industry in which Imagion operates. These forward-looking statements are subject to risks, uncertainties and assumptions and other factors, many of which are beyond the control of Imagion. Imagion cautions you that forward-looking statements are not guarantees of future performance and that its actual results of operations, financial condition, performance, prospects, growth or opportunities and the development of the industry in which Imagion operates may differ materially from those made in or suggested by the forward-looking statements contained in this presentation. In addition, Imagion does not guarantee any particular rate of return or the performance of Imagion nor does it guarantee the repayment or maintenance of capital or any particular tax treatment. Investors should note that past performance may not be indicative of results or developments in future periods and cannot be relied upon as an indicator of (and provides no guidance as to) Imagion’s future performance. Imagion, its related bodies corporate and each of their respective directors, officers and employees expressly disclaim any obligation or undertaking to review, update or release any update of or revisions to any forward-looking statements in this presentation or any change in Imagion’s expectations or any change in events, conditions or circumstances on which these forward-looking statements are based, except as required by applicable law or regulation.

This presentation and any materials distributed in connection with this presentation are not directed to, or intended for distribution to or use by, any person or entity that is a citizen or resident or located in any locality, state, country or other jurisdiction where such distribution, publication, availability or use would be contrary to law or regulation or which would require any registration or licensing within such jurisdiction.

The distribution of this presentation in certain jurisdictions may be restricted by law and persons into whose possession this presentation comes should inform themselves about, and observe any such restrictions.

Currency translation
All figures in this presentation are expressed in US Dollars or where identified as Australian Dollars (AUD or A$) are converted, where relevant, at an exchange rate of [0.75] USD/AUD.
Cancer diagnostics is a $100 billion market growing at a CAGR of >7%* with imaging techniques accounting for the largest portion.

Cancer continues to be one of the leading causes of mortality globally despite technical advances in science & medicine made in the last 150 years.

THE CONSENSUS WITHIN THE MEDICAL COMMUNITY & SUPPORTED BY THE SEER CANCER STATISTICS IS THAT MORE LIVES COULD BE SAVED IF CANCER COULD BE DETECTED EARLIER.
Medical Imaging in Cancer

<table>
<thead>
<tr>
<th>Modality</th>
<th>X-Ray (Mammography) 1895 (1913)</th>
<th>Ultrasound 1956</th>
<th>Computed Tomography (CT) 1972</th>
<th>Magnetic Resonance (MRI) 1971</th>
<th>Positron Emission Tomography (PET) 1973</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modality</td>
<td>Contrasts bone/tissue density by attenuation of radiation</td>
<td>Contrasts tissue by measuring echo of high frequency sound waves</td>
<td>High resolution & cross sectional form of X-ray</td>
<td>Contrasts bone/tissue density by attenuation of radio frequency</td>
<td>Identifies accumulation of radioactive tracer in tissue</td>
</tr>
<tr>
<td>Risk</td>
<td>Exposes patient to carcinogenic ionizing radiation</td>
<td>Exposes patient to carcinogenic ionizing radiation</td>
<td>Longer scanning time (~ 1hr)</td>
<td>Claustrophobia</td>
<td>Uses radiation emitting non-specific tracer</td>
</tr>
<tr>
<td>Use in Cancer Diagnostics</td>
<td>Mammograms used for screening for breast cancer</td>
<td>Screening for ovarian cancer & to guide biopsy</td>
<td>Staging of solid tumors & recurrence</td>
<td>Reflex imaging</td>
<td>Best for determining metastatic spread</td>
</tr>
<tr>
<td>Cost</td>
<td>$250 - $500</td>
<td>$250 - $750</td>
<td>$1500 - $3000</td>
<td>$2000 - $4000</td>
<td>$5000</td>
</tr>
</tbody>
</table>

Imaging is Not ‘Diagnostic’
UNMET MEDICAL NEED

NON-SPECIFIC, LACK SENSITIVITY

CURRENT MARKET

Imaging methods identify a “region of interest” & can’t differentiate benign from malignant tumors

Contrast agents are regulated as a drug, not a device, making the ROI poor

PET tracers are difficult to develop due to the trade-off of ligand-isotope half life

Obtaining tissue can be difficult (e.g. lung biopsies) or can be prone to false negative results

Pathological assessment requires an invasive & typically painful procedure.
ADDRESSING THE UNMET NEED

CURRENT MARKET

- Imaging methods identify a “region of interest” & can’t differentiate benign from malignant tumors.
- Methods to achieve molecular specificity have not been realized
- Pathological assessment requires an invasive & typically painful procedure; often with side effects.
- Obtaining tissue can be difficult or can be prone to false negative results.

MAGSENSE™ TECHNOLOGY

- Is a functional imaging method able to identify specific tumor phenotypes.
- Will be regulated as a medical device making the regulatory path easier.
- No radio-isotopes are used & particles are metabolized & excreted by normal processes.
- Is a non-invasive method able to minimize need for surgical or biopsy procedures.
- Will be demonstrated clinically by concordance with pathology.
HOW MAGSENSE TECHNOLOGY WORKS

- A low dose of magnetic nanoparticles is injected & allowed to infiltrate or circulate & find the tumor.

- The patient is positioned under the detector for measurement to see if any particles are detectable.

- Only particles attached to the cancer cells will be detectable.

- The bio-specific antibodies on the nanoparticles cause the particles to stick to the specific tumor being targeted.

- All nanoparticles lose their magnetization (“relax”) after a low magnetic field is applied.

- A nanoparticle attached to a bio-marked cancer cell will relax more slowly than particles in circulation.

- Imagion’s ultra-sensitive detectors are able to locate & quantify the relaxation of only the attached nanoparticles.
LOW TECHNICAL RISK

✓ Nanoparticle formulation uses known materials & methods
 - Iron oxide is already in use for anaemia treatment, & contrast agents
 - Use of antibodies is already the standard for in vitro diagnostics & current standard for IHC pathology assessment
 - FDA agrees the safety profile of the nanoparticles is low risk

✓ Imagion’s **instrument uses proven technologies** that have already been employed in other clinical devices
 - SQUID detectors are use in MEG systems
 - Magnetic coils generate a field strength orders of magnitude weaker than MRI

✓ MagSense technology will be **regulated as a medical device** & not a drug
 - Clinical studies will be pivotal & not multi-phase; requiring fewer patients, saving cost & time

DEVELOPMENT RISK FACTORS

Identifying & sourcing the best targeting antibody or ligand to achieve specificity.

Optimization of the nanoparticle formulation to maximize delivery & achieve the sensitivity needed for each type of cancer.

Safety/toxicity studies will be required for each new cancer targeting nanoparticle.
How MagSense Technology Compares

<table>
<thead>
<tr>
<th>Method</th>
<th>MagSense Magnetic Relaxometry</th>
<th>MRI Magnetic Resonance Imaging</th>
<th>PET Positron Emission Tomography</th>
<th>Ultrasound</th>
<th>X-Ray/CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection Threshold</td>
<td>< 10 million cells</td>
<td>10’s Millions of cells</td>
<td>NA</td>
<td>Billions of cells</td>
<td>NA</td>
</tr>
<tr>
<td>Quantitative</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Specificity</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Graphic courtesy MD Anderson Cancer Center Dept. Imaging Physics

Costs Less to Make & Install

MagSense instrument will **cost less** than conventional MRI or CT technologies (~$500K)

Does not require expensive shielded environment (eliminates ~ $1M in installation costs)

More Sensitive & Specific

MagSense technology is more sensitive than conventional imaging methods which will allow tumors to be detected & treated earlier.

Current imaging methods can not differentiate benign from malignant lesions but MagSense nanoparticles locate specific tumor phenotypes.

Reduces Patient Risks

MagSense technology uses a very low applied magnetic field; orders of magnitude less than MRI.

Unlike PET or X-ray which expose patients to radioactivity or harmful X-rays, Imagion’s nanoparticles are biologically safe & applied at a non-toxic low dose.
BUSINESS MODEL

PRINTER / INK
• MagSense technology includes both the measuring instrument & a consumable (injectable) test reagent - unique in the medical imaging market.
• Revenue & profits driven high gross margin test reagent use on growing installed base of instruments.

GROWTH THROUGH APPLICATIONS
• MagSense technology can be applied to a wide variety of cancers (& other diseases) increasing the recurring revenue on the installed base of instruments.
• The technology can be used at multiple points in the diagnosis & treatment of patients.

MONETIZING THE TECHNOLOGY
• Value proposition & printer/ink revenue model will be attractive to a commercial licensee or partner.
• Imagion will receive milestone fees & royalties or revenue share.

<table>
<thead>
<tr>
<th>APPLICATION IN CANCER</th>
<th>MAGENSEN TECHNOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening</td>
<td>Currently limited to localized detection & requires targetable biomarker</td>
</tr>
<tr>
<td>Primary Diagnosis</td>
<td>Diagnosing “at risk” patients of solid tumor cancers with detectable phenotypes</td>
</tr>
<tr>
<td>Staging</td>
<td>Minimizes use of invasive procedures for certain cancers</td>
</tr>
<tr>
<td>Surgical Assistance</td>
<td>Could be combined with optical imaging agents or surgical magnetometer</td>
</tr>
<tr>
<td>Monitoring Progression / Therapy</td>
<td>Assess therapeutic efficacy through loss of magnetic signal</td>
</tr>
</tbody>
</table>
Pre-Clinical Experimental Results

- Results of specificity of a HER2 targeting nanoparticle were reported at the 2016 San Antonio Breast Cancer Symposium.
- Preliminary results of an ovarian cancer targeting nanoparticle were reported by MD Anderson at the 2017 American Association for Cancer Research meeting.

Key Scientific Collaborators

- MD Anderson Cancer Center’s Department of Imaging Physics has a Magnetic Relaxometry Research Laboratory helping to validate the technology.
- Experts in computational biology of magnetic fields at UCSD are assisting with technology development.
NEXT STEPS FOR COMMERCIALIZATION

PRECLINICAL TOXICOLOGY SAFETY STUDY

Preclinical toxicology safety study with GLP/cGMP compliant HER2 nanoparticles to demonstrate safety for first-in-human studies – expected Q4 2018.

FIRST-IN-HUMAN EX VIVO RESEARCH STUDY

First-in-human ex vivo research study at MD Anderson with a small number of patients to demonstrate MagSense nanoparticles are able to infiltrate & bind to HER2 tumor cells in the lymph nodes – expected Q1 2019.

The study can be undertaken without the clinical instrument & will provide valuable information that will inform cutoff values used in the pivotal clinical study.

PIVOTAL CLINICAL STUDY

A pivotal clinical study will be undertaken to support regulatory submission for the detection of HER2 breast cancer cells in the lymph node – H2 2019.

Submission & initial commercialization may occur outside the US initially.
BOARD & MANAGEMENT

ROBERT PROULX
CHAIRMAN & CEO
- Operationally oriented executive
- 25 years experience in life science & medical device product development & commercialization

BRONWYN LE GRICE
NON EXEC DIRECTOR
- 15 years experience in Australian commercial healthcare & technology markets
- Expertise spans venture capital, capital raising & corporate governance

MICHAEL HARSH
NON EXEC DIRECTOR
- Former VP & CTO of GE Healthcare’s Medical Imaging Business
- 35 years experience in Engineering & product development of medical imaging technologies including MRI, X-ray, & ultrasound

JOHN HAZLE PHD
NON EXEC DIRECTOR
- Board certified for both therapeutic & diagnostic medical physics
- 30 years experience in pre-clinical & clinical medical imaging research
- Chairs Cancer Research programs at UT Graduate School of Biomedical Sciences

ROBERT PROULX
CHAIRMAN & CEO
- Operationally oriented executive
- 25 years experience in life science & medical device product development & commercialization

BRONWYN LE GRICE
NON EXEC DIRECTOR
- 15 years experience in Australian commercial healthcare & technology markets
- Expertise spans venture capital, capital raising & corporate governance

MICHAEL HARSH
NON EXEC DIRECTOR
- Former VP & CTO of GE Healthcare’s Medical Imaging Business
- 35 years experience in Engineering & product development of medical imaging technologies including MRI, X-ray, & ultrasound

JOHN HAZLE PHD
NON EXEC DIRECTOR
- Board certified for both therapeutic & diagnostic medical physics
- 30 years experience in pre-clinical & clinical medical imaging research
- Chairs Cancer Research programs at UT Graduate School of Biomedical Sciences

JAVANKA NAUMOSKA
NON EXEC DIR & CORP SEC
- Australian attorney with expertise in regulatory compliance, corporate, governance & risk, general & commercial liability, & intellectual property

MARK VAN ASTEN
NON EXEC DIRECTOR
- Australian business executive with strong background in diagnostics & healthcare
- 25 years experience in market development & commercializing diagnostic products

BRIAN CONN
CFO
- Financial executive with strong background in early & growth stage biotech
- 25 years experience in raising both public & private capital & M&A activities

FARIDEH BISCHOFF PHD, VP CLINICAL RESEARCH
- Clinical & basic research scientist
- 20 years experience in regulated-market product development
- Widely recognized in fields of rare cancer detection, molecular cytogenetics, diagnostic assays

DAVID LUDVIGSON
NON EXEC DIRECTOR
- Financial & operating executive
- 35 years experience in pharma, medical device & computer products
- Significant experience in corporate strategy, M&A, & financing
INVESTMENT RATIONALE

Strong value proposition addressing large unmet medical need

Low technical risk with near-term de-risking inflection points

Strong board & management team

Large market with clear path to multiple commercial uses

SOUND FINANCIALS

Total funding to-date – US$27.4M

Cash at 30 June 2018 – US$2.7M

Quarterly cash burn projection – US$1.0M plus project outsourcing costs

Clean balance sheet – no debt; no convertible notes or warrants
<table>
<thead>
<tr>
<th>INVESTMENT HIGHLIGHTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$100 BILLION</td>
</tr>
<tr>
<td>Annual global spending on cancer diagnosis in imaging & pathology.</td>
</tr>
<tr>
<td>8 PATENTS</td>
</tr>
<tr>
<td>Core technology covered in major markets through to 2029.</td>
</tr>
<tr>
<td>“PRINTER & INK” MODEL</td>
</tr>
<tr>
<td>Product includes both the instrument & a diagnostic consumable.</td>
</tr>
<tr>
<td>$2 BILLION</td>
</tr>
<tr>
<td>Addressable markets for first cancer targets: breast, prostate, ovarian.</td>
</tr>
<tr>
<td>PLATFORM TECHNOLOGY</td>
</tr>
<tr>
<td>Not limited to initial targets or cancer diagnostics.</td>
</tr>
<tr>
<td>Additional targets being explored.</td>
</tr>
<tr>
<td>LOW TECHNICAL RISK</td>
</tr>
<tr>
<td>Pre-clinical development has reduced technical risks. Clear path to clinical & commercial utility.</td>
</tr>
<tr>
<td>8 PATENTS</td>
</tr>
<tr>
<td>Core technology covered in major markets through to 2029.</td>
</tr>
</tbody>
</table>
MAGSENSE FUNCTIONAL IMAGING IN THE CANCER DIAGNOSTIC LANDSCAPE

Diagnostics Landscape

<table>
<thead>
<tr>
<th>APPLICATION IN CANCER</th>
<th>MAGSENSE TECHNOLOGY</th>
<th>IMAGING E.G. MRI, CT, PET, X-RAY</th>
<th>LIQUID BIOPSIES E.G. CTC & CNA</th>
<th>OPTICAL IMAGING E.G. CDOTS & QDOTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening</td>
<td>Currently limited to localized detection Requires targetable biomarker</td>
<td>Mammograms & ultrasound are cost effective for screening certain cancers</td>
<td>Could become a cost effective means for screening for cancer related cells/mutations</td>
<td></td>
</tr>
<tr>
<td>Primary Diagnosis</td>
<td>Diagnosing “at risk” patients of solid tumor cancers with detectable phenotypes</td>
<td>Identifies a “Region of Interest” but can not differentiate benign from malignant Ab-PET may improve diagnostic utility</td>
<td>May achieve diagnostic utility but will require some form of in vivo assessment</td>
<td>Limited by depth of penetration to cancers within optical imaging specifications</td>
</tr>
<tr>
<td>Staging</td>
<td>Minimizes use of invasive procedures for certain cancers;</td>
<td>Can be used as an aid but not able to determine positively</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgical Assistance</td>
<td>Could be combined with optical imaging agents or surgical magnetometer</td>
<td>Can be effective to guide biopsy procedures</td>
<td></td>
<td>Can be viewed in real time during surgery for assessment of surgical margins</td>
</tr>
<tr>
<td>Monitoring Progression / Therapy</td>
<td>Assess therapeutic efficacy through loss of magnetic signal</td>
<td>Well suited to assess tumor shrinkage or growth</td>
<td>Could be a cost effective means to evaluate tumor burden &/or prognosis or recurrence</td>
<td></td>
</tr>
</tbody>
</table>
STAGING BREAST CANCER
Shortest Path to Clinical Proof

$500M

PRIMARY TUMOR DETECTION
Breast, Prostate, Lung, & Ovarian

$5B

DOCTORS OFFICE
Ubiquitous like Ultrasound

$10’sB

DETECTION & THERAPY
Nanoparticle is both detection & delivery of therapy

> $100B

OPPORTUNITY & SHAREHOLDER VALUE

IMAGIONBIOSYSTEMS.COM | 18