viewStrategic Elements Ltd

Strategic Elements soars as collaboration aims to develop flexible self-charging battery

The battery cells create electricity from humidity in the air or skin surface to self-charge themselves within minutes.

Strategic Elements Ltd - Strategic Elements soars as collaboration aims to develop flexible self-charging battery
Batteries will be created with a printable ink and will be suited for use in IOT devices.

Strategic Elements Ltd (ASX:SOR) (ASX:SOR) has more than trebled after subsidiary Australian Advanced Materials (AAM) agreed to develop a self-charging battery technology in a collaboration with the University of New South Wales (UNSW) and CSIRO.

This work, which is part-funded by the Australian Research Council, is targeting to develop new electronic materials for a wide range of uses in flexible electronics and making significant advances in energy-efficient data storage devices.


The battery cells create electricity from humidity in the air or skin surface to self-charge themselves within minutes and no manual charging or wired power is required.

They are created with a printable ink and are ideally suited for use in Internet of Things (IOT) devices.

Shares up 231%

Shares have surged as much as 231% to 21.5 cents intra-day, a new four-year high for the company, which is registered by the Australian Federal Government as a Pooled Development Fund with a mandate to back Australian innovation.

Securities closed at 15 cents on volume of almost 320 million with these transactions valued in excess of $54 million.

Strategic Elements managing director Charles Murphy said: “Early-stage results are extremely promising as we apply years of experience and intellectual property in electronic inks into the development of a Battery Ink that generates electricity from the environment.

“From the Automated Robotic Security Vehicle we are building with US giant Honeywell, the ongoing commercialisation of the Nanocube Memory Ink, this new development in Battery Ink and other commercial activities on the horizon, SOR is generating significant momentum.”

Strong potential advantages

The battery ink will be developed by integrating significant existing ink formulation and printed electronics intellectual property from the company’s Nanocube Memory Ink technology, with an advanced graphene oxide material.

Strong potential competitive advantages exist over lithium-based batteries that suffer from weight, safety (flammable) and needs a constant power supply to recharge.

Benefiting from exceptional physicochemical properties, graphene-based materials can harvest energy from external factors such as moisture and heat.

Graphene oxide is formed by the oxidation of graphite which is cheap and readily available.

Graphene oxide is dispersible in water and other solvents.

Early-stage work with graphene oxide ink at UNSW includes:

  • Fabrication of over 100 battery cells by coating the graphene oxide ink onto glass;
  • Self-charging time of around three minutes using water vapour in the air;
  • Extremely thin battery cells at around 10-20 microns, which is thinner than a human hair;
  • Small size of 1 centimetre, with potential to be much smaller; and
  • Generation of more than 0.7 volts of power a cell. 3.7 volts goal from connected cells in 12 weeks.

Battery Ink development

Development of the Battery Ink at UNSW in the next 12 weeks will be focused on:

  • Materials engineering and optimisation of ink formulation;
  • Achieving scale-up to large batch size of Battery Ink of at least 1 litre; and
  • Successful prototype connecting multiple battery cells producing at least 3.7 volts.

Further development challenges include reducing battery cell size whilst increasing current output at lower humidity levels and demonstrator device development.

Batteries for IoT

Technological advancements and adoption of various Internet of Things (IoT) devices such as wearables, smart meters, various sensors and home automation products, are the key driving growth in the battery market.

The global battery market for IoT is already significant with US$8.7 billion in 2019 and is projected to grow to US$15.9 billion by 2025 .

A growing need for thin and flexible batteries in IoT and medical devices, along with inherent advantages of micro-batteries provides opportunities.


Existing resources from within the project will be allocated towards integrating the printed Nanocube Memory with printed self-charging batteries.

The total budget for the collaborative project has been set at around $1.069 million for up to three years.

The Australian Research Council Linkage funding provides $320,000 in cash while AAM, which retains Intellectual property and commercialisation rights, is providing $160,000 cash and $150,000 in-kind support and services.

CSIRO is providing around $25,000 in-kind support and services and UNSW is providing $414,000 in-kind support and services.

Strategic Elements has also opted to increase cash support by $30,000.

Quick facts: Strategic Elements Ltd

Price: 0.48 AUD

Market: ASX
Market Cap: $181.62 m

Add related topics to MyProactive

Create your account: sign up and get ahead on news and events


The Company is a publisher. You understand and agree that no content published on the Site constitutes a recommendation that any particular security, portfolio of securities, transaction, or investment strategy is...

In exchange for publishing services rendered by the Company on behalf of Strategic Elements Ltd named herein, including the promotion by the Company of Strategic Elements Ltd in any Content on the Site, the Company...


Anglo Pacific Group makes a transformational move by acquiring stream on the...

Anglo Pacific Group (TSE: APY- LSE: APF) CEO Julian Treger joined Steve Darling from Proactive with news the company has just announced the biggest deal the company has ever done, acquiring a stream on Vale’s Voisey’s Bay Nickel and Cobalt project in Newfoundland and Labrador for 205...

22 hours, 12 minutes ago

4 min read